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Abstract

All Windows memory analysis techniques depend on the
examiner’s ability to translate the virtual addresses used
by programs and operating system components into the
true locations of data in a memory image. In some mem-
ory images up to 20% of all the virtual addresses in use
point to so called “invalid” pages that cannot be found us-
ing a naive method for address translation. This paper ex-
plains virtual address translation, enumerates the different
states of invalid memory pages, and presents a more ro-
bust strategy for address translation. This new method in-
corporates invalid pages and even the paging file to greatly
increase the completeness of the analysis. By using ev-
ery available page, every part of the buffalo as it were,
the examiner can more accurately recreate the state of the
machine as it existed at the time of imaging.

Keywords: Windows, memory analysis, forensics, in-
valid pages, prototype, pagefile

1 Introduction

Memory analysis is a relatively new area of computer
forensics in which an examiner attempts to gather infor-
mation from the the contents of a computer’s memory as
captured in a memory image. Information gleaned from
memory images can include which processes were run-
ning, when they were started and by whom, what specific
activities those processes were doing and the state of ac-
tive network connections.

∗This is the author’s version of a work that was accepted for publica-
tion in Digital Investigation. Changes resulting from the publishing pro-
cess, such as peer review, editing, corrections, structural formatting, and
other quality control mechanisms may not be reflected in this document.
A definitive version was subsequently published in Digital Investigation
and is available at http://dx.doi.org/10.1016/j.diin.2006.12.002.

An integral part of memory analysis is the examiner’s
ability to translate the virtual addresses that programs and
most operating system components use into the true loca-
tions of data in a memory image. Virtual addresses are an
abstraction mechanism used by many operating systems
to simplify the memory management system.

Until now the virtual address translation process relied
on addresses pointing to data that was in main memory,
used by only one program, not in transition and unmodi-
fied. Memory is divided into pages or frames of 0x1000
bytes each1. When a page did not meet the above condi-
tions, it was said to be “invalid” as it could nofst be used
immediately by a program. Despite the name, these pages
were still accessible to the operating system and thus ig-
noring them is a naive method for performing memory
analysis. Incorporating these invalid pages creates a more
complete picture and, to borrow a phrase, is like using ev-
ery part of the buffalo [10]; taking full advantage of the
available resources.

This paper demonstrates the methods for translating
virtual addresses into physical locations even when they
point to invalid pages. These pages can be located in a
memory image and used during analysis. The paper starts
with an introduction to virtual to physical address transla-
tion and describes the results of the translation process.
Then the six kinds of invalid entries are described fol-
lowed by a demonstration of how much more data can be
retrieved from a memory image when the examiner con-
siders both valid and invalid pages. Finally, some sugges-
tions for future research are discussed.

1Each 0x1000 bytes of data constitute a ‘page’ when in memory and
a ‘frame’ when on the disk.
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2 Related Work
The modern era of Windows memory analysis began in
2005 with the DFRWS Memory Analysis Challenge [6].
The challenge presented two Windows 2000 memory im-
ages and asked researchers to answer a set of specific
questions regarding malicious software and illicit activity
on the system. Chris Betz along with George Garner and
Robert-Jan Mora published detailed responses [2, 7], but
neither paper discussed their address translation method-
ology.

Betz published his tool the following year [3] and was
soon followed by Mariusz Burdach [4], Harlan Carvey
[5], Andreas Schuster [14], Joe Stewart [15], and others
[1, 16]. Unfortunately all of them used a naive method
for address translation. Either an address was valid and
the resulting data were used by the tool, or the address
was invalid and ignored. In most cases, when data were
unavailable the result was padded with zeros.

The FATKit framework [8] was the first to mention us-
ing the pagefile as a further source of data for memory
analysis. That paper did not, however, mention the other
invalid memory states described in this paper. Nicholas
Maclean’s thesis [9] discussed the invalid states and de-
scribed a method to parse some of them correctly, but still
ignored prototype entries.

3 Address Translation
Windows uses virtual addresses to abstract the memory
storage system from the rest of the operating system and
other programs. The operating system presents each pro-
gram with a large private virtual address space. Each time
a program references a virtual address, the operating sys-
tem translates that virtual address into a physical loca-
tion and accesses the requested data. The data could be
in main memory or on the disk, but the operating sys-
tem must find it and load it into memory before a pro-
gram can use it. If necessary, the operating system loads
data from the disk, resolves inconsistencies, and ensures
the integrity of the system during these accesses. Dur-
ing memory analysis the examiner must accomplish this
same translation process, but without the operating sys-
tem’s help.

The address translation process is slightly different be-

tween 32-bit and 64-bit operating systems and depending
if Physical Address Extension (PAE) or Address Window-
ing Extensions (AWE) are enabled. These processes are
detailed in [11] and are not addressed in this paper. For
simplicity, this paper focuses entirely on 32-bit, or x86,
operating systems where PAE and AWE are not enabled.

Address translation is generally a three stage proce-
dure. Every process on a Windows system maintains a
DirectoryTableBase variable. On a x86 systems this
value is stored in the CR3 register when the process is run-
ning. This value contains the base address of the table of
Page Directory Entries (PDE) for that process. For each
virtual address being translated, a PDE is specified using
a few bits from the original virtual address. The PDE is
used to find the base address of a page of Page Table En-
tries (PTE). The specific PTE is designated using this base
address and some more bits from the original virtual ad-
dress. The PTE in turn points to the base address of the
page in physical memory where the data is stored. The
final address in physical memory is the base address of
this page plus the remaining bits from the original virtual
address.

The least significant bit in a PDE or PTE entry is the
Valid or V bit. When this bit is one the entry is said
to be ‘valid’ and bits 12-31 of the entry contain the Page
Frame Number (PFN) used in the next part of the address
translation process. In a PDE, the PFN points to the page
containing the PTE entry. In a PTE, the PFN points to
the page containing the memory indicated in the original
virtual address. See Figure 1 for an example.

On the other hand, when the V bit is zero the entry is
said to be ‘invalid’ and a different set of rules must be
used to find the data in question. In this paper we are
concerned with bit 10, the Prototype or P bit, and bit
11, the Transition or T bit. These bits are shown in
Figure 2. The other bits in these entries are documented
in [11] but beyond the scope of this paper.

4 Invalid PDE and PTE Values
Just because an entry is invalid doesn’t mean that the data
it references is inaccessible. After all, the original oper-
ating system had a method to access these data! The ex-
aminer can follow the same rules as the operating system
to access the data in question. It is possible that the data
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Figure 1: Valid PDE or PTE

Figure 2: PDE and PTE bits relevant to address translation

had never been loaded into memory and are thus inacces-
sible to the examiner. That state, however, is provable and
will be described in Sections 4.5. Regardless, each in-
valid PDE or PTE fits into one of six categories: Pagefile,
Demand Zero, Transition, Prototype, Zero, or Unknown.

4.1 Pagefile

When Windows runs out of physical memory it stores
pages in a paging file on the disk. If both the P and T

bits in an invalid PTE or PDE entry are zero, the entry
points to a frame in one of the paging files [9, 11]. The
format for a Pagefile entry is shown in Figure 3. Windows
can support up to 16 paging files, so the page file number,
PageFileNumber, is given in bits 1-4. Note that [11] and
others sometimes refer to the PageFileNumber as the
PFN, creating confusion with the Page Frame Number in
valid PDEs and PTEs. In this paper the abbreviation PFN
only refers to the Page Frame Number.

The offset of the desired frame in the pagefile,
PageFileOffset, is in bits 12-31 of the invalid entry.
The true offset in the paging file is the value of bits 12-
31 from the entry plus some bits from the original vir-
tual address. Note that both PDEs and PTEs can point
into the paging file and that the methods for finding the
frame in question is different. For a PDE Pagefile en-

try, PageFileOffset uses bits 12-21, shifted right 12
places, from the original virtual address being referenced.
For a Pagefile PTE entry, PageFileOffset uses bits 0-
11 from the original virtual address. These equations are
shown in Figure 4.

4.2 Demand Zero

Like a pagefile entry, Demand Zero entries have zeros
in the T and P bits. But when the PageFileNumber

and PageFileOffset are both zero, the operating sys-
tem has marked the requested page as Demand Zero and
would return any request for it with a page of zeros [11].
It is thus safe for the examiner to treat the requested page
as containing nothing but zeros.

4.3 Transition

When the T bit in an entry is one and the P bit is zero, the
page is said to be in Transition. This means that the page
has been modified but not yet written back to the disk. It
is currently on either the system’s standby, modified, or
modified-no-write lists [11]. (Note that although the de-
scription on page 441 of [11] is correct, the diagram is
not.) The format for a Transition entry is shown in Figure
5. The examiner must be careful to also consider that large
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Figure 3: Pagefile Page Table Entry

PTE PageFileOffset = (pde value & 0xfffff000) +
((virtual address & 0x3ff000) >> 12)

Frame PageFileOffset = (pte value & 0xfffff000) +
(virtual address & 0xfff)

Figure 4: Pagefile Offset Calculations

memory pages2 can be in transition too! Even though a
page was in transition, the page was still in active mem-
ory and can therefore be retrieved by an examiner. Just
like a valid entry, the page frame number is given in bits
12-31 and can be used to continue the address translation
process.

4.4 Prototype
In a PTE, when the P bit is one the entry is a pointer to
a prototype page table entry. Note that when P is one the
value of the T bit is part of the prototype’s index number
and has no bearing on the PTE’s type. The P bit has no
bearing on a PDE’s type. The format for Prototype PTEs
is shown Figure 6. The entry contains an index number
that can be used to compute the virtual address of the pro-
totype PTE.

Prototype PTEs are used when more than one process
is using the same page in memory. Prototypes are created
when the operating system needs to invalidate the page in
question. The operating system authors wanted to avoid
having to update all of the processes using the page each
time the page is moved. Instead, they direct each process
using the page to point to the same prototype. The pro-
totype then points to the page’s true location. When the

2On non-PAE systems, a regular memory page is 4KB. A large mem-
ory page is 4MB.

page in question is moved, the operating system only has
to update the one prototype. The PTE stored by each pro-
cess acts like a shortcut or symbolic link to the true PTE.

When a prototype PTE is encountered, the kernel calls
the function MiResolveProtoPteFault to resolve the
page fault. By reverse engineering that function, the
author determined that Windows stores Prototype PTEs
in the system’s paged area beginning at 0xe1000000.
The reader can verify this by examining the relation
of pointers as described on page 453 of [11]. The
SectionObject structure in the EPROCESS structure (on
Windows XP and above) points to a Segment structure
that contains the address of the prototype PTEs for that
object, namely the executable itself. The reader will see
that these values always begin above 0xe1000000.

To find the virtual address of a Prototype PTE, the ex-
aminer should multiply the index number given in the in-
valid PTE by the size of a PTE, four bytes on an x86 sys-
tem without PAE. Then add the result to the start of the
system’s paged area. This formula is shown in Figure 7.
Note that the examiner may have to do another address
translation to determine the true location of the prototype
PTE itself! Care should be taken so that the analysis does
not fall into an infinite loop of resolving prototype PTEs
during this lookup process.

The author was also able to determine how the flags in
a prototype PTE are handled. Each Prototype PTE should
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Figure 5: PDE or PTE in transition

Figure 6: Prototype PTE entry

be in one of the six states listed below. The flags in the
Protoytpe PTE are generally the same as a regular PTE
except for the P bit. Obviously a Prototype PTE shouldn’t
refer to another Prototype PTE. Instead, the P bit is used
to denote that the Prototype PTE points to a mapped file.

1. Active: The V bit is one. The page was in memory
and can accessed using the Page Frame Number in
the prototype PTE entry.

2. Transition: The V bit is zero and the T bit is one.
The page was in Transition, but can be accessed in
the memory image using the Page Frame Number in
the prototype PTE entry.

3. Modified No-Write: Like a transition prototype
PTE, but the Dirty bit, bit six, is also one. The page
can be accessed in the memory image using the Page
Frame Number in the prototype PTE entry.

4. Page File: The V, T, and P bits are all zero. The data
are stored in the page file. See Section 4.1.

5. Demand Zero: The V, T, and P bits are zero along
with the PageFileNumber and PageFileOffset.
The page should be satisfied with all zeros.

6. Mapped File: The P bit is one. The operating sys-
tem would retrieve the requested data from the orig-
inal file on the disk. The author does not know how
to use the value from these prototype PTEs. See Sec-
tion 6.

4.5 Zero

If the entry is zero, there is no information available for
the page in question. Specifically, the page has been com-
mitted, but has not yet been accessed [11]. That is, the
operating system has allocated a page of physical mem-
ory for this page but has not read from or written to it.
When encountering this situation, it is safe for the exam-
iner to assume that the entire page is zeros. If a process
has allocated memory but never accessed it, it would only
contain the zeros that the operating system provided.

4.6 Unknown

There are still some values that do not fit the rules above.
For example, if a PTE appears to point to a pagefile entry,
but the PageFileNumber is an invalid value (e.g. on a
system with one page file, PageFileNumber is 8).
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PrototypePteAddress = 0xe1000000 + (PrototypeIndex << 2)

Figure 7: Prototype PTE Address Calculation

5 Using Invalid Pages
For this paper the author created a tool that collected in-
formation similar to the writeups for the DFRWS Mem-
ory Analysis Challenge [2, 7]. The tool also recovered
executables, DLLs, and drivers, using the method de-
scribed in [13, 18]. The tool also allowed the author to use
two different methods of address translation. The naive
method of address translation identified valid PDE and
PTE entries, zeroed entries, and classified all other entries
as unknown. Although technically zeroed entries are in-
valid, the naive method of address translation still supplies
the examiner the same result as a more robust method: a
page full of zeros. As such, the author included zeroed
entries in the naive mode as they are technically handled
correctly.

The tool had a second, more robust configuration that
used the information in invalid PDE and PTE to locate
data in the memory images. Prototype PTE entries were
examined and, if valid, used. Prototypes that referred to
mapped files were noted, but as described above, could
not be parsed. Entries marked as in transition were as-
sumed to still be in main memory and used. Entries that
referred to the pagefile were noted, and if the page file was
available, used.

The author ran the tool against the two memory im-
ages distributed with the DFRWS Challenge and recorded
the results of the address translation process. One value
was recorded for resolving the PDE and one value was
recorded for resolving the PTE. Note that it is possible
to have an odd number of values if the PDE could be re-
solved but the PTE could not (e.g. if the PDE referred to
a frame in the paging file which was not available).

The data from the naive translation method are given in
Table 1 and the data using the robust method are given in
Table 2. Neither image had any Demand Zero entries, so
they are not shown. In the second table, the Prototype col-
umn refers to prototype PTEs that pointed to active pages
in memory.

By summing the Valid, Prototype, and Transition
columns in Table 2, we can compute the total number of

entries recoverable by the examiner for analysis. For the
DFRWS-1 image, there were 75,267 recoverable entries,
or 12,131 more entries than were found using the naive
translation. For the DFRWS-2 image, the recovered total
was 100,790 entries, or 14,034 entries more than using the
naive translation. Using the robust method gave the exam-
iner 19.21% and 16.18% more recoverable entries in the
DFRWS-1 and DFRWS-2 images, respectively.

5.1 Analysis
The author was surprised by the increase in the number of
Valid pages when using the robust address translation pro-
cedure. This gain probably came from valid PTEs with
PDEs that had been marked as being in transition. Al-
though they could not be read using the naive method,
they were able to be processed with the more robust rule
set.

It should be noted that some of those entries are surely
repeated. For example, most processes use a number of
basic system libraries like ntdll.dll. By including that
same DLL in the recovery procedure for each process run-
ning on the system, the same DLL will be recovered mul-
tiple times. So the actual gain from using the robust trans-
lation method may not be as much as 19%, but it is still
considerable.

6 Future Work
This paper has attempted to expand the amount of in-
formation available to an examiner conducting Windows
memory analysis. Although demonstrating that more in-
formation is available when using robust address trans-
lation, there are still many opportunities to increase the
amount of recoverable data in a memory image.

6.1 Using the Pagefile
Even more pages could have been recovered if the exam-
iner had access to the pagefile for each system. Frames

6



Table 1: PTE and PDE entries using Naive Address Translation

Image Valid Zero Unknown Total
DFRWS-1 63,136 34,431 8,799 106,366
DFRWS-2 86,756 47,547 6,739 141,042

Table 2: PTE and PDE entries using Invalid Values in Address Translation

Image Valid Zero Prototype Mapped File Pagefile Transition Unknown Total
DFRWS-1 72,295 36,005 1,956 1,525 1,995 1,016 3,952 118,744
DFRWS-2 98,852 51,877 1,347 1,606 413 591 4,733 159,419

stored in the pagefile would immediately be accessible.
In addition, using the pagefile might also allow the exam-
iner to use more information already present in the mem-
ory image. A virtual address may reference a PDE that
points to a PTE in the paging file even though the physical
page in question is in main memory. Such a page would
be inaccessible under naive translation under any circum-
stances and even when using robust translation unless the
pagefile was also available.

Furthermore, some crucial information to module re-
covery is located in the first page of the module. The
number of sections, their locations and offsets are all in
this first page. Without the first page, the examiner can
recover a number of bytes equal to the total size of the
module, but won’t recover the module correctly. If the
module’s first page was in the paging file, which happened
a few times in the DFRWS images, recovering the rest of
the module properly was not possible.

In order to use the pagefile effectively, however, it
must be acquired at the same time of memory acquisi-
tion. By default, Windows uses only one paging file,
%SystemDrive%\pagefile.sys, but the true locations
and filenames for paging files should be found using the
registry [12]. Capturing these pagefiles is difficult on a
live system as traditional file copying utilities cannot open
them. The files are in use by the operating system and may
not be opened by another process. To copy a paging file
the examiner can use a program to parse the raw file sys-
tem. It would be beneficial for first responders to have a
program to capture both physical memory and the paging

file in one step.
When working with a virtualized environment like

VMWare [17], however, the examiner can suspend the
guest operating system and capture both memory and the
paging file at her leisure. The contents of physical mem-
ory are usually written to a file (e.g. A .vmem file un-
der VMWare). To acquire the pagefile, the examiner can
mount the drive from the system in question in another
guest operating system and copy the pagefile. The exam-
iner must be careful to mount the drive in non-persistent
mode so that no changes are made to the source drive.
Making changes on the source drive makes it difficult to
restart the suspended virtual machine.

At this time the author does not know if the amount
of additional information gathered from the pagefile
would be worth modifying incident response procedures
to gather the required data. Further, the inevitable delay,
no matter how slight, between capturing a memory image
and the paging file may create inconsistencies between the
two that frustrate an analysis. That is, data in main mem-
ory might refer to items in the pagefile that were no longer
in the pagefile when it was captured.

6.2 Other Issues

The author has not determined how the operating sys-
tem retrieves data from prototype PTE entries that re-
fer to mapped files. Reverse engineering the function
MiResolveMappedFileFault may yield some infor-
mation, but further work may be needed to determine if
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an examiner can use this information, in conjunction with
the appropriate filesystem, to recover the data in question.

The thousands of still unknown PDE and PTE values
found in the DFRWS memory images are troubling. The
author did not determine if these values represent evi-
dence of the malware present on the system or are a nor-
mal part of the operating system. It is possible that these
values contain some meaningful information, but the au-
thor has not researched this question.

Finally, this paper has focused entirely on 32-bit oper-
ating systems without PAE or AWE enabled. Although
a similar technique for using invalid PDEs and PTEs can
easily be applied to PAE systems, the performance gain
for doing so is unknown. Similarly, the author does not
know if the analysis of AWE or 64-bit systems would
benefit from using invalid entries. Additional work will
be required to apply this new technique to those operating
systems.

7 Conclusion
This paper has demonstrated that the completeness of
Windows memory analysis is significantly improved
when using robust address translation. Naive address
translation methods have worked to date, but are not ade-
quate for a rigorous analysis. Furthermore, robust address
translation allows examiners to make use of the paging
file for the first time. Using the techniques described in
this paper, examiners should be able to recover more data
from each memory image and create a more complete pic-
ture during their analyses.
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